Optimization with the Nature-Inspired Intelligent Water Drops Algorithm
نویسنده
چکیده
Scientists are beginning to realize more and more that nature is a great source for inspiration in order to develop intelligent systems and algorithms. In the field of Computational Intelligence, especially Evolutionary Computation and Swarm-based systems, the degree of imitation from nature is surprisingly high and we are at the edge of developing and proposing new algorithms and/or systems, which partially or fully follow nature and the actions and reactions that happen in a specific natural system or species. Among the most recent nature-inspired swarm-based optimization algorithms is the Intelligent Water Drops (IWD) algorithm. IWD algorithms imitate some of the processes that happen in nature between the water drops of a river and the soil of the river bed. The IWD algorithm was first introduced in (Shah-Hosseini, 2007) in which the IWDs are used to solve the Travelling Salesman Problem (TSP). The IWD algorithm has also been successfully applied to the Multidimensional Knapsack Problem (MKP) (Shah-Hosseini, 2008a), n-queen puzzle (Shah-Hosseini, 2008b), and Robot Path Planning (Duan et al., 2008). Here, the IWD algorithm and its versions are specified for the TSP, the n-queen puzzle, the MKP, and for the first time, the AMT (Automatic Multilevel Thresholding). Some theoretical findings have also been reviewed for the IWD algorithm. Next section reviews briefly the related works. Section 3 examines natural water drops. Section 4 states about Intelligent Water Drops (IWDs). Section 5 specifies the Intelligent Water Drops (IWD) algorithm. Next section, reviews the convergence properties of the IWD algorithm. Section 7 includes experiments with the IWD and its versions for the four mentioned problems. Final section includes the concluding remarks.
منابع مشابه
A Novel Intelligent Water Drops Optimization Approach for Estimating Global Solar Radiation
Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this paper, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation on a horizontal surface. The proposed method uses Intelligent Water ...
متن کاملThe intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm
A natural river often finds good paths among lots of possible paths in its ways from the source to destination. These near optimal or optimal paths are obtained by the actions and reactions that occur among the water drops and the water drops with the riverbeds. The intelligent water drops (IWD) algorithm is a new swarm-based optimisation algorithm inspired from observing natural water drops th...
متن کاملNovel Hybrid Fuzzy-Intelligent Water Drops Approach for Optimal Feeder Multi Objective Reconfiguration by Considering Multiple-Distributed Generation
This paper presents a new hybrid method for optimal multi-objective reconfiguration in a distribution feeder in addition to determining the optimal size and location of multiple-Distributed Generation (DG). The purposes of this research are mitigation of losses, improving the voltage profile and equalizing the feeder load balancing in distribution systems. To reduce the search space, the improv...
متن کاملOptimal Multi-Objective Placement of UPFC for Planning the Operation of Power Systems Using the Water Cycle Optimization Algorithm
Abstract: Unified Power Flow Controller (UPFC) is one of the FACTS devices which plays a crucial role in simultaneous regulating active and reactive power, improving system load, reducing congestion and cost of production. Therefore, determining the optimum location of such equipment in order to improve the performance of the network is significant. In this paper, WCA algorithm is used to locat...
متن کاملA SAIWD-Based Approach for Simultaneous Reconfiguration and Optimal Siting and Sizing of Wind Turbines and DVR units in Distribution Systems
In this paper, a combination of simulated annealing (SA) and intelligent water drops (IWD) algorithm is used to solve the nonlinear/complex problem of simultaneous reconfiguration with optimal allocation (size and location) of wind turbine (WT) as a distributed generation (DG) and dynamic voltage restorer (DVR) as a distributed flexible AC transmission systems (DFACT) unit in a distribution sys...
متن کامل